Craig S. Henriquez

Craig S. Henriquez

Professor of Biomedical Engineering

A breakdown of the normal electrical activation sequence of the heart can sometimes lead to a state of ventricular fibrillation in which the heart ceases to function as an effective pump. Abnormal rhythms or arrhythmias often result after an episode of ischemia (a localized reduction of blood flow to the heart itself) which affects both the ionic processes necessary to elicit an impulse and the passive electrical properties of the tissue. Identifying the complex mechanisms of arrhythmogenesis will require experimentation as well as mathematical and computer models.

Current projects include the application of the bidomain model to diseased tissue to investigate how changes in tissue structure (both natural and diseased induced) and changes in ionic current flow influences the nature of conduction and the onset of arrhythmia.

Dr. Henriquez's group is also interested in developing realistic models that will enable investigators to better interpret electrophysiological measurements made in the clinic. For example, activation maps at the surface of the heart are typically constructed based on the detection of specific features of the surface extracellular recordings. However, for complex activation, such as might arise during an arrhythmia, the features are difficult to distinguish.

The use of models that simulate both activation and the resulting extracellular potential and the application of signal processing techniques can lead to a tool for constructing more meaningful maps from experimental recordings during abnormal conduction. This works involves direct interaction with experimental research performed in the Experimental Electrophysiology Laboratory under the direction of Dr. Patrick Wolf and the Cardiac Electrophysiology & Tissue Engineering lab under the direction of Dr. Nenad Bursac.

Appointments and Affiliations

    Contact Information

    • Office Location: 274 Hudson Hall Annex, Durham, NC 27708
    • Office Phone: (919) 660-5168
    • Email Address:


    • Ph.D. Duke University, 1988
    • B.S. Duke University, 1981

    Research Interests

    Large-scale computing, heart modeling, and brain modeling.

    Awards, Honors, and Distinctions

    • Fellow. American Institute for Medical and Biological Engineering. 2008

    Courses Taught

    • BME 244L9: Quantitative Physiology with Biostatistical Applications
    • BME 244L: Quantitative Physiology with Biostatistical Applications
    • BME 493: Projects in Biomedical Engineering (GE)
    • BME 494: Projects in Biomedical Engineering (GE)
    • BME 503: Computational Neuroengineering (GE, EL)
    • BME 790: Advanced Topics for Graduate Students in Biomedical Engineering
    • BME 791: Graduate Independent Study
    • BME 792: Continuation of Graduate Independent Study
    • EGR 393: Research Projects in Engineering
    • NEUROSCI 503: Computational Neuroengineering (GE, EL)

    Representative Publications

    • Li, S; Henriquez, C; Katul, G, The role of geographical spreaders in infectious pattern formation and front propagation speeds, Physica D: Nonlinear Phenomena, vol 440 (2022) [10.1016/j.physd.2022.133460] [abs].
    • Nguyen, HX; Wu, T; Needs, D; Zhang, H; Perelli, RM; DeLuca, S; Yang, R; Tian, M; Landstrom, AP; Henriquez, C; Bursac, N, Engineered bacterial voltage-gated sodium channel platform for cardiac gene therapy., Nature Communications, vol 13 no. 1 (2022) [10.1038/s41467-022-28251-6] [abs].
    • Rossi, S; Abdala, L; Woodward, A; Vavalle, JP; Henriquez, CS; Griffith, BE, Rule-based definition of muscle bundles in patient-specific models of the left atrium., Frontiers in Physiology, vol 13 (2022) [10.3389/fphys.2022.912947] [abs].
    • Chen, H; Joshi, S; Oberle, AJ; Wong, A-K; Shaz, D; Thapamagar, S; Tan, L; Anholm, JD; Giri, PC; Henriquez, C; Huang, Y-CT, Development and Evaluation of a Small Airway Disease Index Derived From Modeling the Late-Expiratory Flattening of the Flow-Volume Loop., Frontiers in Physiology, vol 13 (2022) [10.3389/fphys.2022.914972] [abs].
    • Henriquez, CS; Ying, W, The bidomain model of cardiac tissue: from microscale to macroscale (2021), pp. 211-223 [10.1007/978-3-030-63355-4_15] [abs].